Math 435: Lecture 42

April 26, 2024
Reference: Tapp, pp. Chapters 4 and 5

Topics:

- Examples of Gauss-Bonnet
- For the unit sphere S^{2}, we have constant curvature $K=1$, and area 4π, hence we find that $\chi\left(\mathrm{S}^{2}\right)=2$.
- We can also compute it directly: for example, if we triangulate S^{2} as a tetrahedron, we obtain $\chi=4-6+4=2$, or if as an octahedron, we obtain $\chi=8-12+6=2$.
- A useful fact is that you can actually compute the Euler characteristic using any partition into polygons, not just triangles. The reason is that you can always subdivide a polygon into triangles, and it won't change the Euler characteristic, since each time we connect two corners, we are adding both a face and an edge.
- Hence, we can also compute $\chi\left(\mathrm{S}^{2}\right)$ with a cube $6-12+8=2$.
- Next, for the torus, it is harder to compute the total Gaussian curvature directly. But we can triangulate (or "polygonate") it using a single face, two edges, and one vertex, hence $\xi=1-2+1=0$. Thus the total Gaussian curvature of a torus is 0 .
- There is a second way to see this, which is by attaching a handle to the sphere.
- That is, we consider the cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=1\right.$ and $\left.z \in[0,1]\right\}$. It has a polygonation with 1 face, 3 edges, and 2 vertices (hence $\chi=0$).
- We can now start with a polygonated surface, remove two faces, and glue on a cylinder along the two resulting boundaries; altogether, we will have removed two faces, and added one face and one edge, hence decreased χ by 2 .
- If we add a handle to S^{2}, we obtain a torus, so we see again that χ of the torus is 2 .
- In general, the genus $g(S)$ of a compact surface $S \subset \mathbb{R}^{3}$ is its number of handles (equivalently, the number of "cuts" that need to be made in order to turn it into a sphere); hence a surface has genus 0 , a torus has genus 1 , and if we attach another handle, we get a surface of genus 2 (a kind of "double torus").
- Since $\chi\left(\mathrm{S}^{2}\right)=2$, we see in general that the Euler characteristic of a genus g surface is

$$
\chi=2-2 g .
$$

- Note that besides the two special cases $g=0$ (the sphere) and $g=1$ (the sphere) the total Gaussian curvature is always negative.
- Gauss-Bonnet with boundary
- The proof of Gauss-Bonnet involves introducing two generalizations of it, which are interesting in their own right.
- The first concerns surfaces with boundary, and says that if S is a surface with boundary, then

$$
\begin{equation*}
\int_{S} K+\int_{\partial S} \kappa_{\mathrm{g}}=2 \pi \chi(S) . \tag{4}
\end{equation*}
$$

(Note that κ_{g} in principle depends on an orientation of S, but switching the orientation changes both the direction of the induced orientation on the boundary curve, and the sign of κ_{g}, so these will cancel out.)

- Note that if $\partial S=\emptyset$, this recovers the old formula.
- In particular, this shows that the Euler characteristic of a surface with boundary is also independent of the triangulation (which we didn't know yet).
- The second variant is about a polygonal region R on a surface S - i.e., it is the case where we have not only boundaries, but corners. In this case, the formula is:

$$
\begin{equation*}
\int_{R} K+\int_{\partial R} \kappa_{\mathrm{g}}+\sum_{i} \alpha_{i}=2 \pi \tag{5}
\end{equation*}
$$

where the sum $\sum_{i} \alpha_{i}$ is over the external angles at the corners of the polygon. Note that we might also write the right side as $2 \pi \chi(R)$ since the Euler characteristic of a disk is $1-1+1=1$.

- Compare this with the Umlaufsatz: $\int_{a}^{b} \kappa_{\mathrm{s}}(t)+\sum_{i=1}^{n} \alpha_{i}=2 \pi$.
- (As stated, this version isn't quite a generalization of (4), since a whole surface will not in general be a polygonal region, but one can formulate a more general version of the theorem which really is a generalization of (4), see Tapp Theorem 6.8.)
- Geodesic polygons
- Though the polygonal version (5) of Gauss-Bonnet will mainly be a tool for us to prove the version (4) for a whole surface, it is actually very interesting in its own right, especially in the case of geodesic polygons, i.e., polygons whose edges are geodesics, so that the term κ_{g} vanishes.
- In the plane, where $K=0$, it then just reduces to the formula $\sum_{i} \alpha_{i}=2 \pi$, or the equivalent version with internal angles $\sum \beta_{i}=(n-2) \pi$.
- Another interesting example to consider is that of spherical geometry, i.e., the study of figures formed out of great circles on the sphere.
- Here, we see, for example, that the usual angle sum of π for a triangle is increased (the triangles are "fatter"), and moreover the defect $\int_{R} K$ is proportional to the area of the triangle.
(In particular, very small triangles have angle sum nearly π, as on a small scale, any surface is "nearly flat".)
- There is a third famous case - called hyperbolic geometry - which is that of a surface with constant negative rather than positive Gaussian curvature, $K=-1$.
- It is difficult to come across such surfaces in \mathbb{R}^{3}, but there is a famous "abstract" surface with this property called the hyperbolic plane, which we do not have time to explain now.
- In any case, here, the triangles are instead thinner, and the defect again is proportional to the area of the triangle.
- The dutch artist M.C. Escher made some famous and beautiful artistic renditions of the hyperbolic plane, which you should look at.
- Sketch of the proof
- Proving the Gauss-Bonnet theorem has two steps: first prove (5), and then use that to prove (4).
- The proof of (5) is the more difficult but (somewhat) less interesting part. There are two basic ideas involved: (i) use Stokes' theorem to relate the integral $\int_{R} K$ over the interior to the integral $\int \kappa_{\mathrm{g}}$ over the boundary, and (ii) use a variant of the argument from the Umlaufsatz (including the part about smoothing the corners) to relate the integral $\int \kappa_{\mathrm{g}}$ to a "total change of angle", which again comes out to be 2π.
- The fun part of the proof is deducing the Gauss-Bonnet theorem (4) for a whole surface, assuming the version (5) about polygonal regions.
- Choose a finite triangulation $T_{1}, \ldots T_{F}$ of the given surface(-with-boundary) S.
- By assumption the equation (5) holds with $R=T_{i}$ for each i.
- Let us sum both sides of this equation over all i. On the right-hand side, we just get $2 \pi F$.
- The first term on the left-hand side simply adds up to $\int_{S} K$.
- The sum of the terms $\int_{\partial T_{i}} \kappa_{\mathrm{g}}$ give the sum over all the edges e of all the triangles of $\int_{e} \kappa_{\mathrm{g}}$. However, each interior edge (i.e., edge which is not on a boundary) is counted twice with opposite signs (because it has the opposite induced orientation from the two adjacent triangles), hence these cancel out. We are thus left with $\int_{\partial S} \kappa_{\mathrm{g}}$.
- Finally, the terms $\sum_{i} \alpha_{i}$ add up to the sum of all the external angles of all the vertices of all the triangles.
- Recall that the external angle α_{i} is $\pi-\beta_{i}$, where β_{i} is the internal angle.
- Hence, we can write this as $A \pi-\sum \beta_{i}$, where A is the total number of angles, and the second term is the sum of all the internal angles (at all vertices).
- Now the sum of all the internal angles at an interior vertex is 2π, whereas at an exterior vertex (i.e., one lying on ∂S), it is just π. Hence $\sum \beta_{i}=2 \pi V_{\mathrm{int}}+\pi V_{\mathrm{ext}}$.
- On the other hand, the number angles at a given interior vertex v is simply the number of edges E_{v} emanating from V, whereas at an exterior vertex it is $E_{v}-1$. Hence, since each edge occurs at two vertices, summing them all up gives $A=2 E-V_{\text {ext }}$.
- Hence, we have $A \pi-\sum \beta_{i}=\left(2 E-V_{\text {ext }}\right) \pi-\left(2 \pi V_{\mathrm{int}}+V_{\text {ext }}\right)=2 \pi(E-V)$.
- Adding everything up, we thus have

$$
\int_{S} K+\int_{\partial S} \kappa_{\mathrm{g}}+2 \pi(E-V)=2 \pi F
$$

which is the Gauss-Bonnet formula.

