April 26, 2024

Reference: Tapp, pp. Chapters 4 and 5

Topics:

(4)

- Examples of Gauss-Bonnet
 - For the unit sphere S², we have constant curvature K = 1, and area 4π , hence we find that $\chi(S^2) = 2$.
 - We can also compute it directly: for example, if we triangulate S² as a tetrahedron, we obtain $\chi = 4 6 + 4 = 2$, or if as an octahedron, we obtain $\chi = 8 12 + 6 = 2$.
 - A useful fact is that you can actually compute the Euler characteristic using any partition into polygons, not just triangles. The reason is that you can always subdivide a polygon into triangles, and it won't change the Euler characteristic, since each time we connect two corners, we are adding both a face and an edge.
 - Hence, we can also compute $\chi(S^2)$ with a cube 6 12 + 8 = 2.
 - Next, for the *torus*, it is harder to compute the total Gaussian curvature directly. But we can triangulate (or "polygonate") it using a single face, two edges, and one vertex, hence $\xi = 1 2 + 1 = 0$. Thus the *total Gaussian curvature of a torus is 0*.
 - There is a second way to see this, which is by attaching a handle to the sphere.
 - That is, we consider the cylinder $\{(x, y, z) \mid x^2 + y^2 = 1 \text{ and } z \in [0, 1]\}$. It has a polygonation with 1 face, 3 edges, and 2 vertices (hence $\chi = 0$).
 - We can now start with a polygonated surface, remove two faces, and glue on a cylinder along the two resulting boundaries; altogether, we will have removed two faces, and added one face and one edge, hence decreased χ by 2.
 - If we add a handle to S², we obtain a torus, so we see again that χ of the torus is 2.
 - In general, the genus g(S) of a compact surface $S \subset \mathbb{R}^3$ is its number of handles (equivalently, the number of "cuts" that need to be made in order to turn it into a sphere); hence a surface has genus 0, a torus has genus 1, and if we attach another handle, we get a surface of genus 2 (a kind of "double torus").
 - Since $\chi(S^2) = 2$, we see in general that the Euler characteristic of a genus g surface is

$$\chi = 2 - 2g.$$

- Note that besides the two special cases g = 0 (the sphere) and g = 1 (the sphere) the total Gaussian curvature is always negative.
- Gauss-Bonnet with boundary
 - The proof of Gauss-Bonnet involves introducing two generalizations of it, which are interesting in their own right.
 - $-\,$ The first concerns surfaces with boundary, and says that if S is a surface with boundary, then

$$\int_{S} K + \int_{\partial S} \kappa_{\rm g} = 2\pi \chi(S)$$

(Note that $\kappa_{\rm g}$ in principle depends on an orientation of S, but switching the orientation changes both the direction of the induced orientation on the boundary curve, and the sign of $\kappa_{\rm g}$, so these will cancel out.)

– Note that if $\partial S = \emptyset$, this recovers the old formula.

- In particular, this shows that the Euler characteristic of a surface with boundary is also independent of the triangulation (which we didn't know yet).
- The second variant is about a polygonal region R on a surface S i.e., it is the case where we have not only boundaries, but corners. In this case, the formula is:

(5)
$$\int_{R} K + \int_{\partial R} \kappa_{\rm g} + \sum_{i} \alpha_{i} = 2\pi$$

where the sum $\sum_{i} \alpha_{i}$ is over the external angles at the corners of the polygon. Note that we might also write the right side as $2\pi\chi(R)$ since the Euler characteristic of a disk is 1 - 1 + 1 = 1.

- Compare this with the Umlaufsatz: $\int_a^b \kappa_s(t) + \sum_{i=1}^n \alpha_i = 2\pi$. (As stated, this version isn't quite a *generalization* of (4), since a whole surface will not in general be a polygonal region, but one can formulate a more general version of the theorem which really is a generalization of (4), see Tapp Theorem 6.8.)
- Geodesic polygons
 - Though the polygonal version (5) of Gauss-Bonnet will mainly be a tool for us to prove the version (4) for a whole surface, it is actually very interesting in its own right, especially in the case of *geodesic polygons*, i.e., polygons whose edges are geodesics, so that the term $\kappa_{\rm g}$ vanishes.
 - In the plane, where K = 0, it then just reduces to the formula $\sum_{i} \alpha_{i} = 2\pi$, or the equivalent version with internal angles $\sum \beta_i = (n-2)\pi$.
 - Another interesting example to consider is that of *spherical geometry*, i.e., the study of figures formed out of great circles on the sphere.
 - Here, we see, for example, that the usual angle sum of π for a triangle is increased (the triangles are "fatter"), and moreover the defect $\int_{B} K$ is proportional to the area of the triangle.
 - (In particular, very small triangles have angle sum nearly π , as on a small scale, any surface is "nearly flat".)
 - There is a third famous case called *hyperbolic geometry* which is that of a surface with constant negative rather than positive Gaussian curvature, K = -1.
 - It is difficult to come across such surfaces in \mathbb{R}^3 , but there is a famous "abstract" surface with this property called the hyperbolic plane, which we do not have time to explain now.
 - In any case, here, the triangles are instead *thinner*, and the defect again is proportional to the area of the triangle.
 - The dutch artist M.C. Escher made some famous and beautiful artistic renditions of the hyperbolic plane, which you should look at.
- Sketch of the proof
 - Proving the Gauss-Bonnet theorem has two steps: first prove (5), and then use that to prove (4).
 - The proof of (5) is the more difficult but (somewhat) less interesting part. There are two basic ideas involved: (i) use Stokes' theorem to relate the integral $\int_{R} K$ over the interior to the integral $\int \kappa_{\rm g}$ over the boundary, and (ii) use a variant of the argument from the Umlaufsatz (including the part about smoothing the corners) to relate the integral $\int \kappa_{\rm g}$ to a "total change of angle", which again comes out to be 2π .

- The fun part of the proof is deducing the Gauss-Bonnet theorem (4) for a whole surface, assuming the version (5) about polygonal regions.
- Choose a finite triangulation T_1, \ldots, T_F of the given surface(-with-boundary) S.
- By assumption the equation (5) holds with $R = T_i$ for each *i*.
- Let us sum both sides of this equation over all *i*. On the right-hand side, we just get $2\pi F$.
- The first term on the left-hand side simply adds up to $\int_S K$.
- The sum of the terms $\int_{\partial T_i} \kappa_g$ give the sum over all the edges e of all the triangles of $\int_e \kappa_g$. However, each *interior* edge (i.e., edge which is not on a boundary) is counted twice with opposite signs (because it has the opposite induced orientation from the two adjacent triangles), hence these cancel out. We are thus left with $\int_{\partial S} \kappa_g$.
- Finally, the terms $\sum_{i} \alpha_i$ add up to the sum of all the external angles of all the vertices of all the triangles.
- Recall that the external angle α_i is $\pi \beta_i$, where β_i is the internal angle.
- Hence, we can write this as $A\pi \sum \beta_i$, where A is the total number of angles, and the second term is the sum of all the *internal* angles (at all vertices).
- Now the sum of all the internal angles at an *interior* vertex is 2π , whereas at an *exterior* vertex (i.e., one lying on ∂S), it is just π . Hence $\sum \beta_i = 2\pi V_{\text{int}} + \pi V_{\text{ext}}$.
- On the other hand, the number angles at a given interior vertex v is simply the number of edges E_v emanating from V, whereas at an exterior vertex it is $E_v - 1$. Hence, since each edge occurs at two vertices, summing them all up gives $A = 2E - V_{\text{ext}}$.
- Hence, we have $A\pi \sum \beta_i = (2E V_{\text{ext}})\pi (2\pi V_{\text{int}} + V_{\text{ext}}) = 2\pi (E V).$
- Adding everything up, we thus have

$$\int_{S} K + \int_{\partial S} \kappa_{\rm g} + 2\pi (E - V) = 2\pi F,$$

which is the Gauss-Bonnet formula.