Problem 1. Prove that there are infinitely many solutions $y: \mathbb{R} \to \mathbb{R}$ to the initial value problem

$$y' = \begin{cases} \sqrt{y}, & y \ge 0\\ 0, & y < 0. \end{cases}$$
$$y(0) = 0$$

Problem 2. For each of the following initial value problems, use Euler's method with a step size of $\Delta x = 0.1$ to give an approximation of y(1), where y is a solution to the equation. Give your approximation in decimal form, up to 3 decimal places. (You will probably want to use a calculator or computer program.)

(a)
$$y' = x^4 - y^3$$
; $y(0) = 1$

- (b) $y' = e^{\sin(x+y)}; \ y(0) = 0$
- (c) $y' = (1+y^2)^{3/2}$; y(0) = 0

Problem 3. Find a solution for each of the following initial value problems, and prove that the solution you found is the unique solution.

- (a) y' + xy = x; y(0) = 1 where $y \colon \mathbb{R} \to \mathbb{R}$
- (b) $xy' + y = x^3$; y(1) = 1 where $y: (0, \infty) \to \mathbb{R}$
- (c) y' = y + 1; y(0) = -1 where $y \colon \mathbb{R} \to \mathbb{R}$

Problem 4. Suppose V is a set and $+: V \times V \to V$ is a function which is associative and commutative, in the sense that $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ and $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$.

- (a) Suppose there is an element $\mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for every $\mathbf{v} \in V$. Prove that there is then a *unique* such element.
- (b) Let $\mathbf{v} \in V$ and suppose that there is an element $(-\mathbf{v})$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$. Prove that there is then a *unique* such element.

Now let W be a vector space.

- (c) Prove that for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in W$, if $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- (d) Prove that $0 \cdot \mathbf{w} = \mathbf{0}$ for any $\mathbf{w} \in W$. *Hint: First prove that* $0 \cdot \mathbf{w} + 0 \cdot \mathbf{w} = 0 \cdot \mathbf{w}$.

Problem 5. Let $f: \mathbb{C}^m \to \mathbb{C}^n$ be a linear map. Prove that there are elements $a_{ij} \in \mathbb{C}$ for $1 \le i \le m$ and $1 \le j \le n$ such that

$$f\begin{bmatrix}v_1\\\vdots\\v_m\end{bmatrix} = \begin{bmatrix}a_{11}v_1 + \dots + a_{1m}v_m\\\vdots\\a_{n1}v_1 + \dots + a_{nm}v_m\end{bmatrix}$$

for all $\mathbf{v} \in V$.

Problem 6. Let $f: V \to W$ be a linear map between two vector spaces.

- (a) Prove that $f(\mathbf{0}) = \mathbf{0}$. Hint: Problem 4 (d).
- (b) Prove that f is injective if and only if $\ker(f) = \{\mathbf{0}\} \subset V$.