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1 More on complex exponentials

e Last time, we defined the exponential function as e* = > >° 2—7,1

e A consequence of this is that we can immediately make sense of e? for complex values z € C, simply
by plugging z into the power series.

— In particular, for z € R, we find that
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— We recognize the two terms appearing as the Taylor series for cos and sin.

— As with the exponential function, let us define cos and sin to be given by these two power
series.

e It follows immediately from this definition that sin’ = cos and cos’ = — sin.

— Soon, we will see that there are in fact unique functions satisfying the initial value problems
y" = —y;y(0) = 0;4/(0) = 1 and v = —y;y(0) = 1;4/(0) = 0, respectively. Hence, as with
the exponential function, we get a nice condition characterizing cos and sin uniquely, and the
above series prove the existence of functions satisfying these conditions.

— Tt is also not too hard to show from these definitions that cos® +sin? = 1 and that they agree
with the geometric definition of the trigonometric functions, i.e., that p = (cos(f),sin(8)) € R?
is the point on the unit circle such that the arc-length from (1,0) is p, measured counter-
clockwise, is 6.

e This way of defining e*, cos, and sin immediately gives rise to the famous Fuler’s formula:
e = cosx + isinz.
— This gives a concise way to express points in the plane using polar coordinates: the point with
radius 7 and angle 6 is re®,
x As usual with radial coordinates, the angle is not uniquely determined: we always have
ret? = pei(0+2m) (and conversely, if ret = rqe?2 then r; = ry and 6, — 6y € 27Z — the
one exception being that 0e? = 0 for any 6)



1.1 Some properties of the complex exponential

e A variant (using a bit of complex analysis) of the argument given above to deduce the exponential
law €20 = e . €’ for a,b € R proves that this holds as well for a,b € C.

— From this, we can deduce the addition laws for sin and cos:

cos(a + b) + isin(a + b) = ') = ¢iagit
= (cosa + isina)(cosb + isinb)

= (cosacosb — sinasinb) + i(sina cos b + cos asin b)

hence by comparing real and imaginary parts, we get cos(a + b) = cosacosb — sinasinb and
sin(a + b) = sina cos b + cos asin b.

— This also makes complex numbers easy to multiply when written in polar coordinates: (r1e?)(rqe??) =

(T1T2)6i(91+62).

— In particular, this allows us to easily find square roots (and more generally n-th roots): if
z = re?, then its square roots — i.e., the numbers w € C such that w? = z — are just
w = ++/re/2,

* Indeed, we see that these are square roots, and given any other square root w, we have
w? — z = (w — /re?’?) (w + /re?/?), and hence w = +/re'?/2,

i0+2pi

* (Regarding the ambiguity of #: had we written z = re , we would have gotten the

same square roots w = +/re’/2t7 = ., /rei?/2.
— In particular, if z is a negative real number, then z = re'™, and we have the familiar imaginary
square root \/z = +/re™/? = +i\/r.

e Next, recall that the derivative of a function f: R — C = R? is defined component-wise: if f(z) =
u(x) +iv(z), then f'(z) = u'(x) + iv'(z).
— It follows that
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— Hence, the anti-derivative [ €™ dz of e (the unique-up-to-a-constant function f: R — C
whose derivative is €'*) is %em +C = —ie"” +C, where C € C is an arbitrary complex constant.

— More generally, using that et = ¢ . ¢ we have that %e(“”b)m + (a + ib)elet®)z and
f elatib)r 1, — ﬁe(a-‘rib).T +C.

2 Complex solutions to second-order equations

2.1 Example 11.2.1

e Now consider a general homogeneous second order linear equation Ly = (D? 4 aD + b)y = 0, with
its characteristic equation 72 + ar + b = 0.

— We are perhaps still mainly interested in solutions y: R — R, but now we can also try to
find all solutions y: R — C; and in this case, we can also consider equations with coefficients
a,beC.

e We now factor this polynomial as (r — r1)(r — ro), with roots —a + $v/a®> — 4b (where this square
root is now possibly complex).

e We can thus factor the differential operator as L = (D — r1)(D — r2).



— We will see that the above exponential multiplier method still works because D(e"*y) = ™ (D+
r)y as before, even for r € C.

e As a first example, consider y” +y =0, i.e., (D?+ 1)y =0, i.e., (D —i)(D +1i)y = 0.

— We would like to conclude from this that (D + i)y = c1e® for some ¢; € C.

— That is, we would like to say that u = C'e’® is the general solution u: R — C to the differential
equation v’ = iu.

— Indeed, the usual method works: given any solution u, we have %(ue_i‘”) = e —jue™™ = 0,

hence ue™™ = C for some constant C' € C, and hence u = Ce'®.

e It now remains to solve /' + iy = c1€’*, and for this, we again use exponential multipliers.

— This equation is equivalent to e (y' +iy) = c1€?® (because we can multiply e~ to go back!),
or in other words %(yew) = c1e?®,
* Note that this use of the product rule is legitimate: it is just the ordinary product rule

applied to each of the two components of the function R — C given by x + y(z)e’®.
— This is equivalent to ye™® = %0162” + ¢o for some ¢y € C and hence to
y =1 + e
for some c1, co € C; thus, this is the general solution.

e We can rewrite this as
y = ci(cosz +isinz) + co(cosz — isinz)
= (c1 + c2)cosx + (c1 — cg)isinx
= dy cosx + do sin x,

where we have set d; = ¢1 4 ¢ and dy = i(¢1 — c2).

— Since we can solve for ¢; and co in terms of d; and do, this formula also expresses the general
solution.

— It is the general solution we might have expected for y"” = —y, except that now d; and dy may
be complezx.

— The general real solution is obtained by restricting to the case di,ds € R.

2.2 Theorem 11.2.3

e The above example shows how the proof of Theorem 11.1.1 above can be adapted to the complex
context, to yield the following statement:

e Given any a,b € C, the differential equation 3" + ay’ + by = 0 has the general solution y: R — C
given by
y=cre" + e ryF£r
y = crveT 4 cpe™", ry =1,

with ¢, o € C, where 71,75 € C are the roots of 2 + ar +v = 0.

e In the case where a,b € R and a® — 4b < 0, so that r; = o+ 48 and 9 = a — i3 for some «, 3 € R,
the general solution can also be written

y = c1e*” cos fx + c2e** sin Bz,

where ¢q, co € C. In this case the real solutions y: R — R are precisely those with ¢, co € R.
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Moreover, the initial conditions y(z¢) = yo and y'(x¢) = 2z, for any z¢p € R and yp,29p € C can
always be satisfied by a unique choice of ¢; and cs.

Example 11.2.2

A generalization of the equation y” +% = 0 from Example 11.2.1 is the equation y” 4+ w?y = 0, where
w € R —{0}; this is called the harmonic oscillator equation with angular frequency w.

This has characteristic equation 72 + w? = 0 with roots r = iw, and hence general solution
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y = 1" 4 coe” ™ = dy coswx + do sinwz.

Such functions are called harmonic oscillators, and arise frequently in physics.

Example 11.2.3

We summarize the form of the general solution to y” + ay’ + by = 0 with a,b € R.
This has characteristic equation r2 + ar 4+ b = with roots 71,7y = —a/2 + Va2 — 4b/2.
We now consider three cases, based on the sign of the discriminant a? — 4b:

If a®> — 4b > 0, then 71,79 are real and distinct, and the general solution is y = c1€"?% 4 cpe”* with
C1,Co € R.

If a®> — 4b < 0, then 7,75 are imaginary and distinct, and the general solution is iy = c1e®* cos Bz +
c2e® sin Bz with ¢1,¢9 € R, where @ = —a/2, and 8 = va? — 4b/2.

If a®—4b = 0 represents the dividing line between the above oscillatory and non-oscillatory behaviour;
the general solution is y = cyxe™® + coe™”.
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