
Notes for MAT 308, Spring 2025
Mar 10, 11.2A: Complex solutions

Joseph Helfer

Contents

1 More on complex exponentials 1

2 Complex solutions to second-order equations 2

1 More on complex exponentials

• Last time, we defined the exponential function as ez =
∑∞

n=0
zn

n! .

• A consequence of this is that we can immediately make sense of ez for complex values z ∈ C, simply
by plugging z into the power series.

– In particular, for x ∈ R, we find that

eix = 1 + ix− x2

2
− i

x3

3!
+

x4

4!
+ · · ·

=
∞∑
n=0

(−1)n
x2n

2n!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

– We recognize the two terms appearing as the Taylor series for cos and sin.
– As with the exponential function, let us define cos and sin to be given by these two power

series.

• It follows immediately from this definition that sin′ = cos and cos′ = − sin.

– Soon, we will see that there are in fact unique functions satisfying the initial value problems
y′′ = −y; y(0) = 0; y′(0) = 1 and y′′ = −y; y(0) = 1; y′(0) = 0, respectively. Hence, as with
the exponential function, we get a nice condition characterizing cos and sin uniquely, and the
above series prove the existence of functions satisfying these conditions.

– It is also not too hard to show from these definitions that cos2+sin2 = 1 and that they agree
with the geometric definition of the trigonometric functions, i.e., that p = (cos(θ), sin(θ)) ∈ R2

is the point on the unit circle such that the arc-length from (1, 0) is p, measured counter-
clockwise, is θ.

• This way of defining ex, cos, and sin immediately gives rise to the famous Euler’s formula:

eix = cosx+ i sinx.

– This gives a concise way to express points in the plane using polar coordinates: the point with
radius r and angle θ is reiθ.

∗ As usual with radial coordinates, the angle is not uniquely determined: we always have
reiθ = rei(θ+2π) (and conversely, if r1eiθ1 = r2e

iθ2 , then r1 = r2 and θ1 − θ2 ∈ 2πZ – the
one exception being that 0eiθ = 0 for any θ)
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1.1 Some properties of the complex exponential

• A variant (using a bit of complex analysis) of the argument given above to deduce the exponential
law ea+b = ea · eb for a, b ∈ R proves that this holds as well for a, b ∈ C.

– From this, we can deduce the addition laws for sin and cos:

cos(a+ b) + i sin(a+ b) = ei(a+b) = eiaeib

= (cos a+ i sin a)(cos b+ i sin b)

= (cos a cos b− sin a sin b) + i(sin a cos b+ cos a sin b)

hence by comparing real and imaginary parts, we get cos(a + b) = cos a cos b − sin a sin b and
sin(a+ b) = sin a cos b+ cos a sin b.

– This also makes complex numbers easy to multiply when written in polar coordinates: (r1eiθ1)(r2eiθ2) =
(r1r2)e

i(θ1+θ2).

– In particular, this allows us to easily find square roots (and more generally n-th roots): if
z = reiθ, then its square roots – i.e., the numbers w ∈ C such that w2 = z – are just
w = ±

√
reiθ/2.

∗ Indeed, we see that these are square roots, and given any other square root w, we have
w2 − z = (w −

√
reiθ/2)(w +

√
reiθ/2), and hence w = ±

√
reiθ/2.

∗ (Regarding the ambiguity of θ: had we written z = reiθ+2pi, we would have gotten the
same square roots w = ±

√
reiθ/2+π = ∓

√
reiθ/2.

– In particular, if z is a negative real number, then z = reiπ, and we have the familiar imaginary
square root

√
z = ±

√
reiπ/2 = ±i

√
r.

• Next, recall that the derivative of a function f : R → C = R2 is defined component-wise: if f(x) =
u(x) + iv(x), then f ′(x) = u′(x) + iv′(x).

– It follows that
d
dxe

ix = cos′ x+ i sin′ x = − sinx+ i cosx = ieix

– Hence, the anti-derivative
∫
eix dx of eix (the unique-up-to-a-constant function f : R → C

whose derivative is eix) is 1
i e

ix+C = −ieix+C, where C ∈ C is an arbitrary complex constant.

– More generally, using that ea+ib = ea · eib, we have that d
dxe

(a+ib)x + (a + ib)e(a+ib)x and∫
e(a+ib)x dx = 1

a+ibe
(a+ib)x + C.

2 Complex solutions to second-order equations

2.1 Example 11.2.1

• Now consider a general homogeneous second order linear equation Ly = (D2 + aD + b)y = 0, with
its characteristic equation r2 + ar + b = 0.

– We are perhaps still mainly interested in solutions y : R → R, but now we can also try to
find all solutions y : R → C; and in this case, we can also consider equations with coefficients
a, b ∈ C.

• We now factor this polynomial as (r − r1)(r − r2), with roots −a ± 1
2

√
a2 − 4b (where this square

root is now possibly complex).

• We can thus factor the differential operator as L = (D − r1)(D − r2).
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– We will see that the above exponential multiplier method still works because D(erxy) = erx(D+
r)y as before, even for r ∈ C.

• As a first example, consider y′′ + y = 0, i.e., (D2 + 1)y = 0, i.e., (D − i)(D + i)y = 0.

– We would like to conclude from this that (D + i)y = c1e
ix for some c1 ∈ C.

– That is, we would like to say that u = Ceix is the general solution u : R → C to the differential
equation u′ = iu.

– Indeed, the usual method works: given any solution u, we have d
dx(ue

−ix) = u′e−ix−iue−ix = 0,
hence ue−ix = C for some constant C ∈ C, and hence u = Ceix.

• It now remains to solve y′ + iy = c1e
ix, and for this, we again use exponential multipliers.

– This equation is equivalent to eix(y′ + iy) = c1e
2ix (because we can multiply e−ix to go back!),

or in other words d
dx(ye

ix) = c1e
2ix.

∗ Note that this use of the product rule is legitimate: it is just the ordinary product rule
applied to each of the two components of the function R → C given by x 7→ y(x)eix.

– This is equivalent to yeix = 1
2c1e

2ix + c2 for some c2 ∈ C and hence to

y = c1e
ix + c2e

−ix

for some c1, c2 ∈ C; thus, this is the general solution.

• We can rewrite this as

y = c1(cosx+ i sinx) + c2(cosx− i sinx)

= (c1 + c2) cosx+ (c1 − c2)i sinx

= d1 cosx+ d2 sinx,

where we have set d1 = c1 + c2 and d2 = i(c1 − c2).

– Since we can solve for c1 and c2 in terms of d1 and d2, this formula also expresses the general
solution.

– It is the general solution we might have expected for y′′ = −y, except that now d1 and d2 may
be complex.

– The general real solution is obtained by restricting to the case d1, d2 ∈ R.

2.2 Theorem 11.2.3

• The above example shows how the proof of Theorem 11.1.1 above can be adapted to the complex
context, to yield the following statement:

• Given any a, b ∈ C, the differential equation y′′ + ay′ + by = 0 has the general solution y : R → C
given by {

y = c1e
r1x + c2e

r2x, r1 ̸= r2

y = c1xe
r1x + c2e

r2x, r1 = r2,

with c1, c2 ∈ C, where r1, r2 ∈ C are the roots of r2 + ar + v = 0.

• In the case where a, b ∈ R and a2 − 4b < 0, so that r1 = α+ iβ and r2 = α− iβ for some α, β ∈ R,
the general solution can also be written

y = c1e
αx cosβx+ c2e

αx sinβx,

where c1, c2 ∈ C. In this case the real solutions y : R → R are precisely those with c1, c2 ∈ R.
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• Moreover, the initial conditions y(x0) = y0 and y′(x0) = z0, for any x0 ∈ R and y0, z0 ∈ C can
always be satisfied by a unique choice of c1 and c2.

2.3 Example 11.2.2

• A generalization of the equation y′′+y = 0 from Example 11.2.1 is the equation y′′+ω2y = 0, where
ω ∈ R− {0}; this is called the harmonic oscillator equation with angular frequency ω.

• This has characteristic equation r2 + ω2 = 0 with roots r = ±iω, and hence general solution

y = c1e
iωx + c2e

−iωx = d1 cosωx+ d2 sinωx.

• Such functions are called harmonic oscillators, and arise frequently in physics.

2.4 Example 11.2.3

• We summarize the form of the general solution to y′′ + ay′ + by = 0 with a, b ∈ R.

• This has characteristic equation r2 + ar + b = with roots r1, r2 = −a/2±
√
a2 − 4b/2.

• We now consider three cases, based on the sign of the discriminant a2 − 4b:

• If a2 − 4b > 0, then r1, r2 are real and distinct, and the general solution is y = c1e
r1x + c2e

r2x with
c1, c2 ∈ R.

• If a2 − 4b < 0, then r1, r2 are imaginary and distinct, and the general solution is y = c1e
αx cosβx+

c2e
αx sinβx with c1, c2 ∈ R, where α = −a/2, and β =

√
a2 − 4b/2.

• If a2−4b = 0 represents the dividing line between the above oscillatory and non-oscillatory behaviour;
the general solution is y = c1xe

r1x + c2e
r2x.
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