Notes for MAT 308, Spring 2025

Mar 10, 11.2A: Complex solutions

Joseph Helfer

Contents

- 1 More on complex exponentials
- 2 Complex solutions to second-order equations

1 2

1 More on complex exponentials

- Last time, we defined the exponential function as $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.
- A consequence of this is that we can immediately make sense of e^z for *complex* values $z \in \mathbb{C}$, simply by plugging z into the power series.
 - In particular, for $x \in \mathbb{R}$, we find that

$$e^{ix} = 1 + ix - \frac{x^2}{2} - i\frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n!} + i\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

- We recognize the two terms appearing as the Taylor series for cos and sin.
- As with the exponential function, let us *define* cos and sin to be given by these two power series.
- It follows immediately from this definition that $\sin' = \cos$ and $\cos' = -\sin$.
 - Soon, we will see that there are in fact *unique* functions satisfying the initial value problems y'' = -y; y(0) = 0; y'(0) = 1 and y'' = -y; y(0) = 1; y'(0) = 0, respectively. Hence, as with the exponential function, we get a nice condition characterizing cos and sin uniquely, and the above series prove the existence of functions satisfying these conditions.
 - It is also not too hard to show from these definitions that $\cos^2 + \sin^2 = 1$ and that they agree with the geometric definition of the trigonometric functions, i.e., that $\mathbf{p} = (\cos(\theta), \sin(\theta)) \in \mathbb{R}^2$ is the point on the unit circle such that the arc-length from (1,0) is \mathbf{p} , measured counterclockwise, is θ .
- This way of defining e^x , cos, and sin immediately gives rise to the famous Euler's formula:

$$e^{ix} = \cos x + i \sin x.$$

- This gives a concise way to express points in the plane using polar coordinates: the point with radius r and angle θ is $re^{i\theta}$.
 - * As usual with radial coordinates, the angle is not uniquely determined: we always have $re^{i\theta} = re^{i(\theta+2\pi)}$ (and conversely, if $r_1e^{i\theta_1} = r_2e^{i\theta_2}$, then $r_1 = r_2$ and $\theta_1 \theta_2 \in 2\pi\mathbb{Z}$ the one exception being that $0e^{i\theta} = 0$ for any θ)

1.1 Some properties of the complex exponential

• A variant (using a bit of complex analysis) of the argument given above to deduce the exponential law $e^{a+b} = e^a \cdot e^b$ for $a, b \in \mathbb{R}$ proves that this holds as well for $a, b \in \mathbb{C}$.

- From this, we can deduce the addition laws for sin and cos:

$$\cos(a+b) + i\sin(a+b) = e^{i(a+b)} = e^{ia}e^{ib}$$
$$= (\cos a + i\sin a)(\cos b + i\sin b)$$
$$= (\cos a \cos b - \sin a \sin b) + i(\sin a \cos b + \cos a \sin b)$$

hence by comparing real and imaginary parts, we get $\cos(a+b) = \cos a \cos b - \sin a \sin b$ and $\sin(a+b) = \sin a \cos b + \cos a \sin b$.

- This also makes complex numbers easy to multiply when written in polar coordinates: $(r_1e^{i\theta_1})(r_2e^{i\theta_2}) = (r_1r_2)e^{i(\theta_1+\theta_2)}$.
- In particular, this allows us to easily find square roots (and more generally *n*-th roots): if $z = re^{i\theta}$, then its square roots i.e., the numbers $w \in \mathbb{C}$ such that $w^2 = z$ are just $w = \pm \sqrt{r}e^{i\theta/2}$.
 - * Indeed, we see that these *are* square roots, and given any other square root w, we have $w^2 z = (w \sqrt{r}e^{i\theta/2})(w + \sqrt{r}e^{i\theta/2})$, and hence $w = \pm \sqrt{r}e^{i\theta/2}$.
 - * (Regarding the ambiguity of θ : had we written $z = re^{i\theta+2pi}$, we would have gotten the same square roots $w = \pm \sqrt{r}e^{i\theta/2+\pi} = \pm \sqrt{r}e^{i\theta/2}$.
- In particular, if z is a negative real number, then $z = re^{i\pi}$, and we have the familiar imaginary square root $\sqrt{z} = \pm \sqrt{r}e^{i\pi/2} = \pm i\sqrt{r}$.
- Next, recall that the derivative of a function $f \colon \mathbb{R} \to \mathbb{C} = \mathbb{R}^2$ is defined component-wise: if f(x) = u(x) + iv(x), then f'(x) = u'(x) + iv'(x).
 - It follows that

$$\frac{\mathrm{d}}{\mathrm{d}x}e^{ix} = \cos' x + i\sin' x = -\sin x + i\cos x = ie^{ix}$$

- Hence, the anti-derivative $\int e^{ix} dx$ of e^{ix} (the unique-up-to-a-constant function $f: \mathbb{R} \to \mathbb{C}$ whose derivative is e^{ix}) is $\frac{1}{i}e^{ix} + C = -ie^{ix} + C$, where $C \in \mathbb{C}$ is an arbitrary complex constant.
- More generally, using that $e^{a+ib} = e^a \cdot e^{ib}$, we have that $\frac{d}{dx}e^{(a+ib)x} + (a+ib)e^{(a+ib)x}$ and $\int e^{(a+ib)x} dx = \frac{1}{a+ib}e^{(a+ib)x} + C.$

2 Complex solutions to second-order equations

2.1 Example 11.2.1

- Now consider a general homogeneous second order linear equation $Ly = (D^2 + aD + b)y = 0$, with its characteristic equation $r^2 + ar + b = 0$.
 - We are perhaps still mainly interested in solutions $y: \mathbb{R} \to \mathbb{R}$, but now we can also try to find all solutions $y: \mathbb{R} \to \mathbb{C}$; and in this case, we can also consider equations with coefficients $a, b \in \mathbb{C}$.
- We now factor this polynomial as $(r r_1)(r r_2)$, with roots $-a \pm \frac{1}{2}\sqrt{a^2 4b}$ (where this square root is now possibly complex).
- We can thus factor the differential operator as $L = (D r_1)(D r_2)$.

- We will see that the above exponential multiplier method still works because $D(e^{rx}y) = e^{rx}(D+r)y$ as before, even for $r \in \mathbb{C}$.
- As a first example, consider y'' + y = 0, i.e., $(D^2 + 1)y = 0$, i.e., (D i)(D + i)y = 0.
 - We would like to conclude from this that $(D+i)y = c_1 e^{ix}$ for some $c_1 \in \mathbb{C}$.
 - That is, we would like to say that $u = Ce^{ix}$ is the general solution $u: \mathbb{R} \to \mathbb{C}$ to the differential equation u' = iu.
 - Indeed, the usual method works: given any solution u, we have $\frac{d}{dx}(ue^{-ix}) = u'e^{-ix} iue^{-ix} = 0$, hence $ue^{-ix} = C$ for some constant $C \in \mathbb{C}$, and hence $u = Ce^{ix}$.
- It now remains to solve $y' + iy = c_1 e^{ix}$, and for this, we again use exponential multipliers.
 - This equation is equivalent to $e^{ix}(y'+iy) = c_1 e^{2ix}$ (because we can multiply e^{-ix} to go back!), or in other words $\frac{d}{dx}(ye^{ix}) = c_1 e^{2ix}$.
 - * Note that this use of the product rule is legitimate: it is just the ordinary product rule applied to each of the two components of the function $\mathbb{R} \to \mathbb{C}$ given by $x \mapsto y(x)e^{ix}$.
 - This is equivalent to $ye^{ix} = \frac{1}{2}c_1e^{2ix} + c_2$ for some $c_2 \in \mathbb{C}$ and hence to

$$y = c_1 e^{ix} + c_2 e^{-ix}$$

for some $c_1, c_2 \in \mathbb{C}$; thus, this is the general solution.

• We can rewrite this as

$$y = c_1(\cos x + i\sin x) + c_2(\cos x - i\sin x)$$

= $(c_1 + c_2)\cos x + (c_1 - c_2)i\sin x$
= $d_1\cos x + d_2\sin x$,

where we have set $d_1 = c_1 + c_2$ and $d_2 = i(c_1 - c_2)$.

- Since we can solve for c_1 and c_2 in terms of d_1 and d_2 , this formula also expresses the general solution.
- It is the general solution we might have expected for y'' = -y, except that now d_1 and d_2 may be *complex*.
- The general *real* solution is obtained by restricting to the case $d_1, d_2 \in \mathbb{R}$.

2.2 Theorem 11.2.3

- The above example shows how the proof of Theorem 11.1.1 above can be adapted to the complex context, to yield the following statement:
- Given any $a, b \in \mathbb{C}$, the differential equation y'' + ay' + by = 0 has the general solution $y \colon \mathbb{R} \to \mathbb{C}$ given by

$$\begin{cases} y = c_1 e^{r_1 x} + c_2 e^{r_2 x}, & r_1 \neq r_2 \\ y = c_1 x e^{r_1 x} + c_2 e^{r_2 x}, & r_1 = r_2, \end{cases}$$

with $c_1, c_2 \in C$, where $r_1, r_2 \in \mathbb{C}$ are the roots of $r^2 + ar + v = 0$.

• In the case where $a, b \in \mathbb{R}$ and $a^2 - 4b < 0$, so that $r_1 = \alpha + i\beta$ and $r_2 = \alpha - i\beta$ for some $\alpha, \beta \in \mathbb{R}$, the general solution can also be written

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x,$$

where $c_1, c_2 \in \mathbb{C}$. In this case the *real* solutions $y \colon \mathbb{R} \to \mathbb{R}$ are precisely those with $c_1, c_2 \in \mathbb{R}$.

• Moreover, the initial conditions $y(x_0) = y_0$ and $y'(x_0) = z_0$, for any $x_0 \in \mathbb{R}$ and $y_0, z_0 \in \mathbb{C}$ can always be satisfied by a unique choice of c_1 and c_2 .

2.3 Example 11.2.2

- A generalization of the equation y'' + y = 0 from Example 11.2.1 is the equation $y'' + \omega^2 y = 0$, where $\omega \in \mathbb{R} \{0\}$; this is called the *harmonic oscillator equation* with *angular frequency* ω .
- This has characteristic equation $r^2 + \omega^2 = 0$ with roots $r = \pm i\omega$, and hence general solution

$$y = c_1 e^{i\omega x} + c_2 e^{-i\omega x} = d_1 \cos \omega x + d_2 \sin \omega x.$$

• Such functions are called *harmonic oscillators*, and arise frequently in physics.

2.4 Example 11.2.3

- We summarize the form of the general solution to y'' + ay' + by = 0 with $a, b \in \mathbb{R}$.
- This has characteristic equation $r^2 + ar + b =$ with roots $r_1, r_2 = -a/2 \pm \sqrt{a^2 4b}/2$.
- We now consider three cases, based on the sign of the discriminant $a^2 4b$:
- If $a^2 4b > 0$, then r_1, r_2 are real and distinct, and the general solution is $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ with $c_1, c_2 \in \mathbb{R}$.
- If $a^2 4b < 0$, then r_1, r_2 are imaginary and distinct, and the general solution is $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$ with $c_1, c_2 \in \mathbb{R}$, where $\alpha = -a/2$, and $\beta = \sqrt{a^2 4b}/2$.
- If $a^2-4b=0$ represents the dividing line between the above oscillatory and non-oscillatory behaviour; the general solution is $y = c_1 x e^{r_1 x} + c_2 e^{r_2 x}$.